THEORETICA CHIMICA ACTA
Theoret. Chim. Acta (Berl.) 59, 585-593 (1981) © Springer-Verlag 1981

Covalence Reduction Factors of Four-Coordinated
Pseudo-Tetrahedral Paramagnetic Compounds
in D,, Symmetry
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Theoretical expressions for the covalence reduction factors of orbital angular
momentum and spin-orbit coupling in pseudo-tetrahedral four-coordinated
paramagnetic complexes with D, symmetry, denoted as k’s and R’s respec-
tively, have been derived.

The mixing coefficients in the antibonding MO’s for the CuCl>™ ion in three
complexes are estimated using suitable approximations. It is shown that k’s
must be less than R’s in Tinkham’s approximation. Certain misconceptions
existing in the literature regarding the value of the integral (p,|8/du|s) have
been clarified.
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1. Introduction

Covalency is taken care of in the derivation of expressions of epr anisotropic
g’s and principal magnetic susceptibilities (K ’s) by introducing reduction factors
usually called orbital reduction (k) and spin orbit coupling reduction factors (R)
[1, 2] and defined as
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where |¢;) and |¢;) are the antibonding MO’s transforming according to the same
irreducible representations of the symmetry group as the corresponding d-orbitals
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|d:y and |d;) respectively; [ and (T are the one electron orbital and spin-orbit
coupling operators, respectively.

Expressions of k’s and R’s have been derived for salts and complexes belonging
to Oy [1,2, 3], T, [4), D4, [5], Ds;, and Cy, [6] symmetries. In this paper we
derive expressions of k’s and R’s (following Tinkham’s [2] and Misetich and
Buch’s [7] methods) in salts and complexes of D,,; symmetry like tetra-
chlorocuprate(I) [8,9], which have been studied by epr [10], magnetic
anisotropy [11] and spectral [12] methods. We also point out for the first time
that k < R where R is derived using Tinkham’s approximation. Moreover, certain
uncertainties [3] regarding the value of the integral “P”’ (defined in Section 3)
have been clarified. Expressions of k’s and R’s derived here are used to estimate
mixing coefficients occurring in MO’s for some tetrachlorocuprate(II) complexes.

2. The Antibonding Molecular Orbitals

The antibonding MO’s used in deriving expressions of k’s and R’s are obtained
following standard group-theoretical methods [13, 14], (the orientations of the
axes are as given in Fig. 1) and these are given in Eq. (2):

A
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where d.z, d,>—,2, ..., etc. are metal ion d-orbitals, o, x; and y; (i=1, 2,3,4)
are hybrid sp [6], p, and p, orbitals respectively of ligand atom i, and v, A,
A1, ..., etc. are the mixing coefficients. Following usual convention [4, 6] we

have neglected the mixing of d-orbitals with the p and s-orbitals of the central
atom which are permitted by symmetry.
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Fig, 1. The arrows at the sites L;, L, L3 and L, pointing to the origin of XYZ represent the ligand
z axes. The axis x; (at site Ly) is chosen to lie in the plane passing through L, and the Z axis while
y1 is chosen perpendicular to this plane so that the coordinate system x1y;z; is left handed. The
orientations of the coordinate systems at the remaining sites can be obtained by successive operations
of Cz,, Cy, and C,, on x1y12;. The parameter p = b/a is given by V2 cot « [16]

The normalization constants for the above MQO’s are

Nuy=[1+7+A>=V2(3E> = 1)y($: + ;) +4V3BEAS:] /2 (a)
Ny, =[1+A7 +4V2D1,85]7? o)
Now=[1+73+13 ~2V6D%y3(S1 + ;) ~8ADA,S:] © @
N, =[1+73+A3 +u3 —2V6DEys(S1+5,) —4(AE ~ BD)As3S5
+2V2Eu;8517 @
N, =[1+9% +A% +uf ~2/6DEy}(S1+8:)~ 4AE -~ BD)ASS,
+2v2Eu}S;17? ©
where
; N
. \/2P€+4; o \/2p:+4; v =Wi’7“; E=

and S, S, and S5 are the diatomic overlap integrals [15]
Sl = <S1|d22> = S(nso" 3d0" R)’ S2 = (ledzz> = S("Pm 3d¢71 R);
S3 = (xlldxy) = S(np'rn 3d1'r’ R)
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between a metal d-orbital and a ligand orbital and where 5 =2 or 3 depending
upon whether second or third row elements form the ligands.

3. Orbital and Spin Orbit Coupling Reduction Factors

The expressions of k’s and R’s as defined in Eqn. (1), where the antibonding
MO’s are given in Eq. (2), are derived for all possible cases following standard
procedure [3, 6] and these are given in Eq. (4)
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While evaluating matrix elements of | over symmetry adapted combinations
of ligand orbitals e.g. the element

Gy1+y2+ y3+ )’4)|(fz l%(a'l +oa— 03— 04)

it becomes necessary to translate [ (referred to the central metal ion coordinate
system) to the respective ligand atom sites (cf. Fig. 1) so that

f =2 b —V2Dh + N2

V2 9y1

where fol, and sz1 are orbital angular momentum operators referred to the
coordinate system at ligand atom 1 (c.f. Fig. 1). We therefore have to evaluate
one-centre integrals of the form P =(p,|3/dz|s) and Q = (p,|3/ay|s) = (p,|8/ox|s)
neglecting all many centre integrals of these forms since their contribution is
small [16]. We also neglect ligand-ligand overlap in Eq. (2) [3]. The integrals
of type Q are zero by symmetry arguments [16] while those of type P are not
and are therefore retained in the expressions (Eq. 4).

Following Tinkham [2] we express R’s defined in Eq. (1), as products of
normalization constants

R, =N,N, R>=N; N,,; R;3=N,,N,,; Ry=Ny,N,,;
Rs=N,N.,, (5)
where Ry, R,, ..., Rs are defined analogously to the k’s in Eq. (4).

™

However, if one uses Misetich and Buch’s approximation [7], the expressions
of R’s are of the type
ApsD  yusA 1 $p
R =Na Ne[l—{*—:———-?—'__‘.()t‘y —‘Y)\ )}“‘—} (6)
b 3oVve V2t T,
corresponding to R, in Eq. (5) and where ¢, is the spin-orbit coupling constant
of the ligand atom and {, that of the central metal ion. This type of expression
is useful in compounds involving Br~ as the ligand (where ¢, for Br~ =2200 cm™
[7]). In general ¢, < ¢; and therefore the expression given in Eq. (6) reduces to
Eq. (5).
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4. Estimation of Mixing Coeflicients

Mixing coefficients occurring in the antibonding MO’s (Eq. (2)) are estimated
from the expressions of k’s and R’s (Eqgs. (4) and (5)) for the complexes Caesium
tetrachlorocuprate(II) Cs,CuCly; tetramethylammonium tetrachlorocuprate(II)
[(CH3)sNL,CuCls and trimethylbenzyl ammonium tetrachlorocuprate(II)
[(CH3)3(CsHsCH2)N],CuCl, using experimental information from X-ray struc-
ture [8, 9] (in calculating p, cf. Fig. 1), single crystal magnetic anisotropy [11],
epr [10] and spectral results [12] of these compounds.

The procedure followed is: first reduction factors k’s and R’s of these compounds
are found by fitting the experimental values of magnetic anisotropy and aniso-
tropic g’s and energylevel separations from spectral work to the theoretical expres-
sions for the ionic anisotropic g’s and K’s (principal magnetic susceptibilities) in
D, symmetry given in [18, 19]. The values of the reduction factors ky, k,, Rjand
R, so estimated are heretofore to be referred as experimentally estimated values
and their correspondence with the expressions in Egs. (4) and (5) are given in
Table 1.

Now, the estimation of the mixing coefficients v, A, ...etc. using the experi-
mentally estimated values of k’s and R’s (Table 1) and the relevant equations
(Egs. (4) and (5)) require the simultaneous solution of a set of non-linear algebraic
equations. Therefore, we reduce the number of unknowns {mixing coeflicients
A1, Y2, A2, V3, As, 3 overlap integrals Sy, S, S3; the integral P and the value
of the coordinate p) to the number of known quantities (values of k’s and R’s)
in the following way:

(i) The value of “p” is calculated [16] using X-ray structural data for CuCl;~
ion in the above mentioned complexes [8, 9]. The values of the diatomic integrals
S1, S2 and S3 are calculated using appropriate expressions [15] and the program
PSJ3[16]. The value of the integral P is obtained from the appropriate expression
for a particular type of radial function for the metal ion (Cu*?) and the ligand
(CI") orbitals using the program PINTGL [16].

(ii) The number of mixing coefficients is reduced to four by putting

Y
Az’—"—32

since sr-overlap is usually one third of the o-type overlap for the same pair of
atomic orbitals [17], and also,

H3=As
so that we have four unknown quantities in all i.e. Ay, v, v3 and A3.

The resulting equations are then solved by a method of successive approxima-
tions, using the program D2DCOF [16], yielding values of the mixing coefficients
(A1, ¥2, v3» A3) and ky, ko, R, R, nearest to the experimentally estimated values
of k’s and R’s (cf. Table 1). The results are given in Table 1.
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Table 1. Mixing coefficients for CuCli™

1. Cs,CuCly Using Original Exptal Values of kjj k7 Rj R (Values in Brackets are Exptal)
Basis Orbitals A1 v2 v As Ry (073) R, (0.70) Kk (0.81) k. (0.72)

S.T.O. 0.646 0.05 0.05 0.71 0.812 0.716 0.739 0.701
Clementi and

Raimondi 0.8 0.01 0.01 0.7 0.7697 0.711 0.749 0.711
Burns 0.69 0.01 0.01 0.703 0.797 0.709 0.754 0.710
Richardson 0.67 0.01 0.01 0.70 0.798 0.710 0.746 0.712

2. Cs,CuCl, Using Refitted Values of kj k, Ry R,
Basis Orbitals At A2 v Az R (0.81) R, (0.76) Kk(0.73) Kk, (0.70)

S.T.O. 0.66 0.06 0.35 0.63 0.809 0.761 0.731 0.695
Clementi and

Raimondi 046 0.54 0.67 0.17 0.811 0.758 0.730 0.702
Burns 0.69 0.15 0.58 0.53 0.805 0.759 0.732 0.699
Richardson 0.67 0.12 045 0.59 0.809 0.759 0.728 0.701

ak||Ek4, kJ_E k39 R“ER4, RJ_ER3.

Structural Parameters for Cs,CuCl,
o =62.05° [8]; R=0.2215 nm (cf. Fig. 1) [8]. p =0.75036925
A =0.33142185; B=0.88335681; D =0.62462753; E =0.46870124; M =0.11320457

Overlap Integrals and P Integral

Basis Functions S; S, S3 P
Slater type [20] 0.13952506 0.14825398 0.061057858  —0.36886328
Multiple basis Cu™ (23)

Cl™ [24] 0.074147642  0.10832310 0.053064119  —0.41735250

Numerical values of structural parameters and other integrals for the remaining compounds are
available on request.

5. Comment on the Relative Values of k£ and R

Preliminary attempt to determine the mixing coefficients led to the following
difficulty — wherever the experimentally estimated values of k’s were greater
than R’s [18, 19] it was found that the numerical method for estimating mixing
coefficient did not yield an agreement of calculated k’s and R’s with the experi-
mentally estimated k’s and R’s.

It is apparent from the expressions of k’s and R’s (Eqgs. (4) and (5)) that k is R
times a factor of the form

[1—‘2,-)t,'G,‘+leA,')\j] (7)

where A; A; are mixing coefficients, G; a group overlap integral [15] and «a a
term involving numerical quantities and the integral P (cf. Eq. (4)) and where



592 S. Lahiry and P. S. Jaiswal

the integral P is negative. Now, since the value of the factor (7) is less than
unity, one must have, in the present approximation, k <R, a result which has
not been pointed out as yet [3]. If the expression for R is considered to be that
given in Eq. (6) one can still have k <R, since in the expression for R the
normalisation constants are multiplied by a factor such as

[1—{%*%—%()&73—7&)}%} ®)

where the numerical value is larger than that of (7) especially since ¢, for ligands
like O, N, C1™ is very much less than ¢, of the metal ion.

It may also be pointed out that the same relation kK <R holds [16] when one
uses the expressions of ko, Ky Ry and R, given in [3] for O;, symmetry. The
result kK <R thus minimises the uncertainty in the choice of parameters like k’s
and R’s while fitting experimentally obtained data with the theoretical
expressions for anisotropic g’s and magnetic susceptibilities (k’s). In view of this
result, we have refitted the experimental values of ionic anisotropies and reson-
ance ionic g-values in the complexes, where necessary, satisfying the condition
k <R (Table 1).

6. Effect of Radial Function on Mixing Coefficients

The choice of different radial functions (both single [20, 21, 22] and multiple
basis radial functions of Cu”” [23] and CI~ [24] being used (cf. Table 1)) affects
the values of the overlap integrals, the P integral and also the mixing coeflicients
but the changes occurring in the values of the mixing coefficients were not found
to be significant.

During this work, it was felt that a certain amount of confusion exists regarding
the values of integrals of the types P and Q [3] defined in Sect. 3. P integrals
for certain specific cases [6, 25, 26] are known but no general formulae for these
integrals exists. Considering first the one centre case one notes that integrals of
form Q are zero on symmetry grounds [16] while those of form P have values
dependent on the choice of radial functions for p and s-orbitals. With hydrogen
like radial functions, one can show that the P integral must be identically zero
while for Slater type radial functions this is not the case. We document the
following expression for P in the one centre case

_ 1 QRL)TPQE)"T? (natny)! {;a (5-1)+ o (s + 1)}
V3 @r )2 (L ) Mo+ 1

where n,, n, are the principal quantum numbers and {,, {; the orbital exponents,

respectively, of the p, and s orbital. Using Slater type radial functions for p, and

s orbital with 8/90z referred to the same centre as the s orbital we obtain the
following expression for the two-centre P integral

19 2(np—1)
P=_— ——___——_—-S ar o - a - ap’ as o
Jg[ 2 @m—1) (naDos 1y — 1po) — S (Napo, Npp )]

P
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where S(n.p., n» —1p,) and S(n.p,, nep,) are diatomic overlap integrals [15]. A
similar expression results if we use hydrogenlike radial function for the orbitals.
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