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Theoretical expressions for the covalence reduction factors of orbital angular 
momentum and spin-orbit coupling in pseudo-tetrahedral four-coordinated 
paramagnetic complexes with D2d symmetry, denoted as k's and R's respec- 
tively, have been derived. 

The mixing coefficients in the antibonding MO's for the CuC12- ion in three 
complexes are estimated using suitable approximations. It is shown that k's 
must be less than R's in Tinkham's approximation. Certain misconceptions 
existing in the literature regarding the value of the integral (pu[O/Ouls) have 
been clarified. 
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1. Introduction 

Covalency is taken care of in the derivation of expressions of epr anisotropic 
g's and principal magnetic susceptibilities (K's) by introducing reduction factors 
usually called orbital reduction (k) and spin orbit coupling reduction factors (R) 
[1, 2] and defined as 

k -  (d~l~4) and R = (d~lf~di) (1) 

where I~bl) and 14'1") are the antibonding MO's transforming according to the same 
irreducible representations of the symmetry group as the corresponding d-orbitals 

0040-5744/81/0059/0585/$01.80 



586 s. Lahiry and P. S. Jaiswal 

[d,-) and [dj) respectively; [ and ( / a r e  the one electron orbital and spin-orbit 
coupling operators, respectively. 

Expressions of k's and R's  have been derived for salts and complexes belonging 
to Oh [1, 2, 3], Td [4], D4h [51, D3h and C4v [6] symmetries. In this paper we 
derive expressions of k's and R 's  (following Tinkham's [2] and Misetich and 
Buch's [7] methods) in salts and complexes of D2d symmetry like tetra- 
chlorocuprate(II) [8,9], which have been studied by epr [101, magnetic 
anisotropy [111 and spectral [121 methods. We also point out for the first time 
that k < R where R is derived using Tinkham's approximation. Moreover, certain 
uncertainties [3] regarding the value of the integral "P"  (defined in Section 3) 
have been clarified. Expressions of k's and R 's  derived here are used to estimate 
mixing coefficients occurring in MO's for some tetrachlorocuprate(II) complexes. 

2. The Antibonding Molecular Orbitals 

The antibonding MO's used in deriving expressions of k's and R 's  are obtained 
following standard group-theoretical methods [13, 141, (the orientations of the 
axes are as given in Fig. 1) and these are given in Eq. (2): 

lal) = Nax[ d z2 -2  (00"l + o'x + 003 + 004)-2 (xl + x2 + x3 + x4) ] (a) 

)tl Y4)] Ibm) = Nbl[dx2-y 2 --~ (Yx + Y2 + Y3 + (b) 

e )  = '  

"~2 .~_ X3 __X4) ] ]b2)= Nb:[ d~--~(001 002 h2 -- 0~ -- 004) -- T ( X 1  "~- X2 -- 

lee)=Nee[dyz --~-(001Y3 - 0 0 2 - 0 0 3  +004)--~(Xl--X2--X3-~-X4) 

.3 ] 2 (yl--Y2--y3+y4) 

le > = - Tt00 - + 003-  0 0 , ) - T ( x ,  - + x3-x ) 

2 3 ( y l - y 2 +  y3--y4)] 

(c) 

(2) 

(d) 

(e) 

where dz2, dz2-y~, . . . .  etc. are metal ion d-orbitals, o-t, xi and Yi (i = 1, 2, 3, 4) 
are hybrid sp [6], py and p~ orbitals respectively of ligand atom i, and y, A, 
hi . . . . .  etc. are the mixing coefficients. Following usual convention [4, 6] we 
have neglected the mixing of d-orbitals with the p and s-orbitals of the central 
atom which are permitted by symmetry. 
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Fig. 1. The arrows at the sites La, L2, L3 and L4 pointing to the origin of X Y Z  represent the ligand 
z axes. The axis xl (at site L1) is chosen to lie in the plane passing through L1 and the Z axis while 
Yl is chosen perpendicular to this plane so that the coordinate system xly~zl is left handed. The 
orientations of the coordinate systems at the remaining sites can be obtained by successive operations 
of C2~, Czy and C2~ on xlyazl. The parameter p = b/a is given by ~/2cot a [16] 

T h e  n o r m a l i z a t i o n  cons tan t s  for  the  a b o v e  M O ' s  a re  

N~I = [1 + 3/2 + A 2 _ x/~(3E 2 _ 1)T(S1 + $2) + 4 ~ B E A S 3 ]  -~/2 

Nbl = [1 + A~ + 4 v ~ D M S 3 ]  -~/2 

Nb~ = [1 + y29 + h ~ - 2~/-6D2y2(Sl  + 82) - 8 A D A  2S3] -1/2 

Ne~ = [1 + y23 + A ~ + I~ ~ - 2 q ~ D E y 3 ( S ~  + $2) - 4 ( A E  - B D  )A3S3 

+ 2.J2E/.t 3S3] -1/2 

,2 _ ,2 2",/-6DEy'3 (S~ + $2) - 4 ( A E  - B D ) A  '3S3 Ne = [ l + ' y ~ 2 + A 3  -e/~ 3 - 

+ 2x/~Etx'3S3] -z /2 

w h e r e  

~ /  p2 ~ /  4 1 
A =  2p--~+ 4,  B =  O =  2 p 2 + 4  ' x /2- -~p;  

and  $1, $2 and  $3 are  the  d i a t o m i c  ove r l ap  in tegra ls  [15] 
$1 = (s l ldz  2) = S(ns~,  3dr R ) ;  $2 = (z~ldz=) = S(np,~, 3d~, R ) ;  

$3 = (x , ldxy)  = S(np=, 3 d , ,  R )  

P 
E =  

(a) 

(b) 

(c) (3) 

(d) 

(e) 
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between a metal d-orbital and a ligand orbital and where n = 2 or 3 depending 
upon whether second or third row elements form the ligands. 

3. Orbital and Spin Orbit Coupling Reduction Factors 

The expressions of k's and R 's  as defined in Eqn. (1), where the antibonding 
MO's are given in Eq. (2), are derived for all possible cases following standard 
procedure [3, 6] and these are given in Eq. (4) 

(al[lx[e~) (ax[[ylen) 
kl  = (dz2lLidyz) = (dz2lf, ldxz) 

r ( 3 E  z -  1) 
= N~,N~[ 1 ~/~ (SI+Sz)+,~(2~/3BE)S3 

- ~3",/2ES3 - y34-6DE(S~ + S:) 

- h 3 2 ( A E - B D ) S 3 + ( p M + ~ )  {hY3-Yh3}  + Y t z3 (PP+A~ htz3D ] 
4g 4-~ ~4~ J 4~ J 

(a) 

(bilL[e,) (b~lfyle,) 
kz = (dx~_y2lfx[d~z) = (dx~-~lSldxz) 

Ne~Nbl [ 1 + h 14-8DS3 - r34gDE ( S1 + S2) - X 32(AE - r iD)& - ~ S Z E S 3  

ks-- (bdSle.)  (bzll~lee) 
(&,ILl&z)  = (&,ll~ld,z) (4) 

Nb2Ne,[ 1 - y2x/6D2(& + $2) - h z4ADS3  - y3x/gDE(Si  + $2) - tz3x/2ES3 

( P M  + I /V~)  
- A 32(AE - BD)S3 -~ 

,/~ v2 

<b,I/;Ib=> 

Nb,Nb= [ 1 + ,/SD&a~ - .r2,/6D 2(& + &) 

-A24ADS3 AIT2(P+D) AIA2A] 
2 

{/~ 2 Y3 -- 'Y2h 3} 

(c) 

(d) 
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(e, lfzlee) 
ks=(d~zl~z[dyz) 

= NeeNe.{ 1 - "y'3 4-dDE(S1 + Sa) 

- 2t '32(AE - BD)S3 - ix '3 x/2ES3 - 73,/-dDE(S, + $2) 

- A 32(AE - BD)S3 - -  I X 3 ~ / - 2 E S 3  - ix '373(P + D) - ix '3A3Ax/2 
? 

+ ~ _ 3  (p + B) + A '3ix 3E] (e) 
42 d 

where M = x/(p 2 + 2)/2. 

While evaluating matrix elements of [ over symmetry adapted combinations 
of ligand orbitals e.g. the element 

<�89 ~ , Y2 q- Y3 q- Y4)l(lz 1~(0-1 q- 0"2 --  0"3 -- 0"4)) 

it becomes necessary to translate [ (referred to the central metal ion coordinate 
system) to the respective ligand atom sites (cf. Fig. 1) so that 

L =_~A [L~I--~/2DILxI + ix/-2 O-~-ayl 

where /'cxl, and /'Lzl are orbital angular momentum operators referred to the 
coordinate system at ligand atom 1 (c.f. Fig. 1). We therefore have to evaluate 
one-centre integrals of the form P = (p~[a/azls) and O = (p~lO/Oyls) = <pzlO/oxls) 
neglecting all many centre integrals of these forms since their contribution is 
small [16]. W~ also neglect ligand-ligand overlap in Eq. (2) [3]. The integrals 
of type O are zero by symmetry arguments [16] while those of type P are not 
and are therefore retained in the expressions (Eq. 4). 

Following Tinkham [2] we express R ' s  defined in Eq. (1), as products of 
normalization constants 

R1 -- NalNe~; R 2 =  NblNee; R3 = Nb2Nee; R 4 =  NblNb2; 

R5 = NeeNe~ (5) 

where R1, R 2  . . . . .  R5 are defined analogously to the k's in Eq. (4). 

However, if one uses Misetich and Buch's approximation [7], the expressions 
of R ' s  are of the type 

1 

/ [ x/3 ~/g ~d 

corresponding to R1 in Eq. (5) and where ffp is the spin-orbit coupling constant 
of the ligand atom and ~'a that of the central metal ion. This type of expression 
is useful in compounds involving Br-  as the ligand (where ffp for Br- = 2200 cm -1 
[7]). In general ~'p << ~'d and therefore the expression given in Eq. (6) reduces to 
Eq. (5). 
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4. Estimation of Mixing Coefficients 

Mixing coefficients occurring in the antibonding MO's (Eq. (2)) are estimated 
from the expressions of k's and R's (Eqs. (4) and (5)) for the complexes Caesium 
t e t rachlorocupra te( I I )  Cs2CuCl4; tetramethylammonium tetrachlorocuprate(II) 
[(CHa)4N]2CuC14 and trimethylbenzyl ammonium tetrachlorocuprate(II) 
[(CHa)a(C6HsCH2)N]2CuC14 using experimental information from X-ray struc- 
ture [8, 9] (in calculating p, cf. Fig. 1), single crystal magnetic anisotropy [11], 
epr [10] and spectral results [12] of these compounds. 

The procedure followed is: first reduction factors k's and R's of these compounds 
are found by fitting the experimental values of magnetic anisotropy and aniso- 
tropic g's and energy level separations from spectral work to the theoretical expres- 
sions for the ionic anisotropic g's and K's (principal magnetic susceptibilities) in 
D2d symmetry given in [18, 19]. The values of the reduction factors kli, k• gll and 
R j_ so estimated are heretofore to be referred as experimentally estimated values 
and their correspondence with the expressions in Eqs. (4) and (5) are given in 
Table 1. 

Now, the estimation of the mixing coefficients y, A, . . .  etc. using the experi- 
mentally estimated values of k's and R's (Table 1) and the relevant equations 
(Eqs. (4) and (5)) require the simultaneous solution of a set of non-linear algebraic 
equations. Therefore, we reduce the number of unknowns (mixing coefficients 
A1, y2, A2, Y3, A3,/z3; overlap integrals $1, $2, 83; the integral P and the value 
of the coordinate p) to the number of known quantities (values of k's and R's) 
in the following way: 

(i) The value of "p" is calculated [16] using X-ray structural data for CuC14 2- 
ion in the above mentioned complexes [8, 9]. The values of the diatomic integrals 
$1, $2 and $3 are calculated using appropriate expressions [15] and the program 
PSJ3 [ 16]. The value of the integral P is obtained from the appropriate expression 
for a particular type of radial function for the metal ion (Cu +2) and the ligand 
(C1-) orbitals using the program PINTGL [16]. 

(ii) The number of mixing coefficients is reduced to four by putting 

h2 =y2 
3 

since ~-overlap is usually one third of the o--type overlap for the same pair of 
atomic orbitals [17], and also, 

~3-----A3 

so that we have four unknown quantities in all i.e. Ax, Y2, y3 and A3. 

The resulting equations are then solved by a method of successive approxima- 
tions, using the program D2DCOF [ 16], yielding values of the mixing coefficients 
(A 1, "Y2, 3/3, A3) and kll, k• gll, R• nearest to the experimentally estimated values 
of k's and R's (cf. Table 1). The results are given in Table 1. 
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1. Cs2CuC14 Using Original Exptal Values of kl~ k~_ Rk~ R~_ (Values in Brackets are Exptal) 

Basis Orbitals hi 3"2 3"3 A3 RII (0.73) R• (0.70) kll (0.81) k• (0.72) 

S.T.O. 0.646 0.05 

Clementi and 
Raimondi 0.8 0.01 

Burns 0.69 0.01 

Richardson 0.67 0.01 

0.05 0.71 0.812 0.716 0.739 0.701 

0.01 0.7 0.7697 0.711 0.749 0.711 

0.01 0.703 0.797 0.709 0.754 0.710 

0.01 0.70 0.798 0,710 0.746 0.712 

2. Cs2CuCI4 Using Refitted Values of ktl k• R u R• 

Basis Orbitals hi hz 3'3 A3 Rll (0.81) R• (0.76) kll (0,73) k• (0.70) 

S.T.O. 0.66 0.06 0.35 0.63 0.809 0.761 0.731 0.695 

Clementi and 
Raimondi 0.46 0.54 0 .67  0.17 0.811 0.758 0.730 0.702 

Burns 0.69 0.15 0.58 0.53 0.805 0.759 0.732 0.699 

Richardson 0.67 0.12 0 .45  0.59 0.809 0.759 0.728 0.701 

a kll~ k4, k• k3, RII-=-R4, R• =- R3. 

Structural Parameters for Cs2CuC14 
a = 62.050 [8]; R = 0.2215 nm (cf. Fig. 1) [8]. p = 0.75036925 
A = 0.33142185; B = 0.88335681; D = 0.62462753; E = 0.46870124; M = 0.11320457 

Overlap Integrals and P Integral 
Basis Functions $1 $2 $3 P 
Slater type [20] 0.13952506 0.14825398 0.061057858 -0.36886328 
Multiple basis Cu §247 (23) 

C1- [24] 0.074147642 0.10832310 0.053064119 -0.41735250 

Numerical values of structural parameters and other integrals for the remaining compounds are 
available on request. 

5. C o m m e n t  on the Relative Values  of k and R 

Pre l imina ry  a t t empt  to de t e rmine  the mixing coefficients led to the fol lowing 

difficulty - w h e r e v e r  the exper imenta l ly  es t imated  values of k ' s  were greater  

than  R ' s  [18, 19] it was found  that  the numer ica l  m e t h o d  for es t imat ing  mixing 

coefficient did no t  yield an ag reemen t  of calculated k ' s  and  R ' s  with the experi -  
men ta l ly  es t imated  k ' s  and  R 's. 

It  is appa ren t  f rom the expressions of k ' s  and  R ' s  (Eqs. (4) and  (5)) that  k is R 
t imes a factor of the form 

[1 - '~iAiai + ozA/Aj] (7) 

where  Ai, Aj are mixing  coefficients, Gi a group over lap integral  [15] and  a a 
te rm involving numer ica l  quant i t ies  and  the integral  P (of. Eq.  (4)) and  where  
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the integral P is negative. Now, since the value of the factor (7) is less than 
unity, one must have, in the present approximation, k < R, a result which has 
not been pointed out as yet [3]. If the expression for R is considered to be that 
given in Eq. (6) one can still have k <R ,  since in the expression for R the 
normalisation constants are multiplied by a factor such as 

[ 1_ [A/z3D 'y/zaA 1 (8) 

where the numerical value is larger than that of (7) especially since (p for ligands 
like O, N, CI- is very much less than (d of the metal ion. 

It may also be pointed out that the same relation k < R  holds [16] when one 
uses the expressions of k~=, k==, R~,~ and R•= given in [3] for Oh symmetry. The 
result k < R thus minimises the uncertainty in the choice of parameters like k's 
and R's while fitting experimentally obtained data with the theoretical 
expressions for anis0tropic g's and magnetic susceptibilities (k's). In view of this 
result, we have refitted the experimental values of ionic anisotropies and reson- 
ance ionic g-values in the complexes, where necessary, satisfying the condition 
k < R (Table 1). 

6. E6ect of Radial Function on Mixing Coefficients 

The choice of different radial functions (both single [20, 21, 22] and multiple 
basis radial functions of Cu ++ [23] and C1- [24] being used (cf. Table 1)) affects 
the values of the overlap integrals, the P integral and also the mixing coefficients 
but the changes occurring in the values of the mixing coefficients were not found 
to be significant. 

During this work, it was felt that a certain amount of confusion exists regarding 
the values of integrals of the types P and Q [3] defined in Sect. 3 . P  integrals 
for certain specific cases [6, 25, 26] are known but no general formulae for these" 
integrals exists. Considering first the one centre case one notes that integrals of 
form Q are zero on symmetry grounds [16] while those of form P have values 
dependent on the choice of radial functions for p and s-orbitals. With hydrogen 
like radial functions, one can show that the P integral must be identically zero 
while for Slater type radial functions this is not the case. We document the 
following expression for P in the one centre case 

1 (2~,~)n'~+l/2(2~b) nb+l/2 (na+nb)! ~a(nb-1)+_~b(nb+l)'l 
P = - ~  (2na!)l/Z(2nb!) 1/2 ((aq'-(b) na+nb+l[ na+nb 1 

where na, nb are the principal quantum numbers and (a, (b the orbital exponents, 
respectively, of the pz and s orbital. Using Slater type radial functions for pz and 
s orbital with O/Oz referred to the same centre as the s orbital we obtain the 
following expression for the two-centre P integral 

p =  ~'0_[ 2(rib --1) -- lp ,~)-  S(n,,p,,, nop,~)] 
x/3l~/2nb(2nb -- 1) S(nap~, nb A 



Covalence Reduction Factors 593 

where S(napo-, nb - lp , )  and S(napo-, nbpo,) are diatomic overlap integrals [15]. A 
similar expression results if we use hydrogenlike radial function for the orbitals. 
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